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A B S T R A C T  

This paper compares several different approaches to robust 
speech recognition. We review CMU's ongoing research in the 
use of acoustical pre-proeessing to achieve robust speech recog- 
nition, and we present the results of the first evaluation of pre- 
processing in the context of the DARPA standard ATIS domain 
for spoken language systems. We also describe and compare the 
effectiveness of three complementary methods of signal process- 
ing for robust speech recognition: acoustical pre-procossing, 
microphone array processing, and the use of physiologically- 
motivated models of peripheral signal processing. Recognition 
error rates are presented using these three approaches in isolation 
and in combination with each other for the speaker-independent 
continuous alphanumeric census speech recognition task. 

1. I N T R O D U C T I O N  

The need for speech recognition systems and spoken lan- 
guage systems to be robust with respect to their acoustical 
environment has become more widely appreciated in 
recent years (e.g. [1]). 

Results of several studies have demonstrated that even 
automatic speech recognition systems that are designed to 
be speaker independent can perform very poorly when they 
are tested using a different type of microphone or acous- 
tical environment from the one with which they were 
trained (e.g. [2, 3]), even in a relatively quiet office en- 
vironment. Applications such as speech recognition over 
telephones, in automobiles, on a factory floor, or outdoors 
demand an even greater degree of environmental robust- 
ness. 

The CMU speech group is committed to the development 
of speech recognition systems that are robust with respect 
to environmental variation, just as it has been an early 
proponent of speaker-independent recognition. While most 
of our work presented to date has described new acoustical 
pre-processing algorithms (e.g. [2, 4, 5], we have always 
regarded pre-processing as one of several approaches that 
must be developed in concert to achieve robust recog- 
nition. 

The purpose of this paper is twofold. First, we describe 

our results for the DARPA benchmark evaluation for 
robust speech recognition for the ATIS task, discussing the 
effectiveness of our methods of acoustical pre- 
preprocessing in the context of this task. Second, we 
describe and compare the effectiveness of three com- 
plementary methods of signal processing for robust speech 
recognition: acoustical pre-processing, microphone array 
processing, and the use of physiologically-motivated 
models of peripheral signal processing. 

2. A C O U S T I C A L  P R E - P R O C E S S I N G  

We have found that two major factors degrading the per- 
formance of speech recognition systems using desktop 
microphones in normal office environments are additive 
noise and unknown linear filtering. We showed in [2] that 
simultaneous joint compensation for the effects of additive 
noise and linear filtering is needed to achieve maximal 
robustness with respect to acoustical differences between 
the training and testing environments of a speech recog- 
nition system. We described in [2] two algorithms that can 
perform such joint compensation, based on additive correc- 
tions to the cepstral coefficients of the speech waveform. 

The first compensation algorithm, SNR-Dependent 
Cepstral Normalization (SDCN), applies an additive cor- 
rection in the cepstral domain that depends exclusively on 
the instantaneous SNR of the signal. This correction vec- 
tor equals the average difference in cepstra between simul- 
taneous "stereo" recordings of speech samples from both 
the training and testing environments at each SNR of 
speech in the testing environment. At high SNRs, this 
correction vector primarily compensates for differences in 
spectral flit between the training and testing environments 
(in a manner similar to the blind deconvolution procedure 
first proposed by Stockham et al. [6]), while at low SNRs 
the vector provides a form of noise subtraction (in a man- 
ner similar to the spectral subtraction algorithm first 
proposed by Boll [7]). The SDCN algorithm is simple and 
effective, but it requires environment-specific training. 

The second compensation algorithm, Codeword- 
Dependent Cepstral Normalization (CDCN), uses EM 
techniques to compute ML estimates of the parameters 
characterizing the contributions of additive noise and 
linear filtering that when applied in inverse fashion to the 
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cepstra of an incoming utterance produce an ensemble of 
cepstral coefficients that best match (in the ML sense) the 
cepstral coefficients of the incoming speech in the testing 
environment to the locations of VQ codewords in the train- 
ing environment. The CDCN algorithm has the advantage 
that it does not require a p r i o r i  knowledge of the testing 
environment (in the form of stereo training data in the 
training and testing environments), but it is much more 
computationally demanding than the SDCN algorithm. 
Compared to the SDCN algorithm, the CDCN algorithm 
uses a greater amount of structural knowledge about the 
nature of the degradations to the speech signal in order to 
achieve good recognition accuracy. The SDCN algorithm, 
on the other hand, derives its compensation vectors en- 
tirely from empirical observations of differences between 
data obtained from the training and testing environments. 
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Figure 1: Comparison of error rates obtained on the cen- 
sus task with no processing, spectral subtraction, spectral 
normalization, and the CDCN algorithm. SPHINX was 
trained on the CLSTLK microphone and tested using ei- 
ther the CLSTLK microphone (solid curve) or the 
PZM6FS microphone (broken curve). 

Figure 1 compares the error rate obtained when the SPHINX 
system is trained using the DARPA standard HMD-414 
closetalking microphone (CLSTLK), and tested using ei- 
ther the CLSTLK microphone or the omnidirectional 
desktop Crown PZM-6FS microphone (PZM6FS). The 
census database was used, which contains simultaneous 
recoredings of speech from the CLSTLK and PZM6FS 
microphones in the context of a speaker-independent 
continuous-speech alphanumeric task with perplexity 65 
[2]. These results demonstrate the value of the joint com- 

pensation provided by the CDCN algorithm in contrast to 
the independent compensation using either spectral sub- 
traction or spectral normalization. The horizontal dotted 
lines indicate the recognition accuracy obtained when the 
system is tested on the microphone with which it was 
trained, with no processing. The intersection of the upper 
curve with the upper horizontal line indicates that with 
CDCN compensation, SPHINX Can recognize speech using 
the PZM6FS microphone just as well when trained on the 
CLSTLK microphone as when trained using the PZM6FS. 

More recently we have been attempting to develop new 
algorithms which combine the computational simplicity of 
SDCN with the environmental independence of CDCN. 
One such algorithm, B l i n d  S N R - D e p e n d e n t  C e p s t r a l  
N o r m a l i z a t i o n  (BSDCN) avoids the need for environment- 
specific training by establishing a correspondence between 

ALGO- ENVIRN. COM- ERR 
RITHM SPEC? PLEXITY RATE 

NONE NO NONE 68.6% 

SDCN YES MINIMAL 27.6% 

CDCN NO GREATER 24.3% 

BSDCN NO MINIMAL 30.0% 

Table 1: Comparison of recognition accuracy of SPHINX 
with no processing and the CDCN, SDCN, and BSDCN 
algorithms. The system was trained using the CLSTLK 
microphone and tested using the PZM6FS microphone. 
Training and testing on the CLSTLK produces a recog- 
nition accuracy of 86.9%, while training and testing on the 
PZM6FS produces 76.2% 

SNRs in the training and testing environments by use of 
traditional nonlinear warping techniques [8] on histograms 
of SNRs from each of the two environments [5]. Table 1 
compares the environmental specificity, computational 
complexity, and recognition accuracy of these algorithms 
when evaluated on the alphanumeric database described in 
[2]. Recognition accuracy is somewhat different from the 

figures reported in Fig. 1 because the version of SPHINX 
used to produce these data was different. All of these al- 
gorithms are similar in function to other currently-popular 
compensation strategies (e .g.  [3, 9]). 

The DARPA ATIS robust speech evaluation. The 
original CDCN algorithm described in [2] was used for the 
February, 1992, ATIS-domain robust-speech evaluation. 
For this evaluation, the SPHINX-II system was trained using 
the CLSTLK microphone, and tested using both the 
CLSTLK microphone and the unidirectional Crown 
PCC-160 microphone (PCC160). All incoming speech in 
this evaluation was processed by the CDCN algorithm, 
regardless of whether the testing environment was actually 
the CLSTLK or PCC160 microphone, and the CDCN algo- 
rithm was not provided with explicit knowledge of the 
identity of the environment within which it is operating. 

As described elsewhere in these Proceedings [10], the sys- 
tem used for the official robust-speech evaluations was not 
trained as thoroughly as the baseline system was lrained. 
Specifically, the official evaluations were performed after 
only a single iteration through training data that was 
processed with the CDCN algorithm, and without the 
benefit of general English sentences in the training 
database. 

In Fig. 2 we show the results of an unofficial evaluation of 
the SPHINX-II system that was performed immediately 
after the official evaluation was complete. The purpose of 
this second evaluation was to evaluate the improvement 
provided by an additional round of training with speech 
processed by CDCN, in order to be able to directly com- 
pare error rates on the ATIS task with CDCN with those 
produced by a comparably-trained system on the same 
data, but without CDCN. As Fig. 2 shows, using the 
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CDCN algorithm causes the error rate to increase from 
15.1% to only 20.4% as the testing microphone is changed 
from the CLSTLK to the PCC160 microphone. In contrast, 
the error rate increases from 12.2% to 38.8% when one 
switches from the CLSTLK to the PCC160 microphone 
without CDCN. 
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Figure 2: Comparison of error rates obtained on the 
DARPA ATIS task with no processing, spectral subtrac- 
tion, spectral normalization, and the CDCN algorithm. 
SPmNX-II was trained on the CLSTLK microphone in all 
cases, and tested using either the CLSTLK microphone 
(solid curve) or the cardiod desktop Crown PCC160 
microphone (broken curve). 

Only two sites submitted data for the present robust speech 
evaluation. CMU's percentage degradation in error rate in 
changing from the CLSTLK to the PCC160 environment, 
as well as the absolute error rate obtained using the 
PCC160 microphone, were the better of the results from 
these two sites. 

3. M I C R O P H O N E  A R R A Y S  AND 

A C O U S T I C A L  P R E - P R O C E S S I N G  

Despite the encouraging results that we have achieved 
using acoustical pre-processing, we believe that further im- 
provements in recognition accuracy can be obtained in dif- 
ficult environments by combining acoustical pre- 
processing with other complementary types of signal 
processing. The use of microphone arrays is motivated by 
a desire to improve the effective SNR of speech as it is 
input to the recognition system. For example, the headset- 
mounted CLSTLK microphone produces a higher SNR 
than the PZM6FS microphone under normal circumstances 
because it picks up a relatively small amount of additive 
noise, and the incoming signal is not degraded by rever- 
berated components of the original speech. 

To estimate the potential significance of the reduced SNR 
provided by the PZM6FS microphone in the office en- 
vironment, we manually examined all utterances in the test 
set of the census task that were recognized correctly when 
training and testing with the CLSTLK microphone but that 
were recognized incorrectly when training and testing 
using the PZM6FS. We found that 54.7 percent of these 
errors were caused by the confusion of silence or noise 

segments with weak phonetic events, (20 percent of the 
errors were caused by cross-talk from other noise sources 
in the room, and the remaining errors could not be at- 
tributed to a particular cause.) Microphone arrays can, in 
principle, produce directionally-sensitive gain patterns that 
can be adjusted to produce maximal sensitivity in the 
direction of the speaker and reduced sensitivity in the 
direction of competing sound sources. To the extent that 
such processing could improve the effective SNR at the 
input to a speech recognition system, the error rate would 
be likely to be substantially decreased, because the number 
of confusions between weak phonetic events and noise 
would be sharply reduced. 

Several different types of array-processing strategies have 
been applied to automatic speech recognition. The 
simplest approach is that of the delay-and-sum beam- 
former, in which delays are inserted in each channel to 
compensate for differences in travel time between the 
desired sound source and the various sensors (e.g. 
[11, 12]). A second option is to use an adaptation algo- 

rithm based on minimizing mean square energy such as the 
Frost or Gfiffiths-Jim algorithm [13]. These algorithms 
provide the opportunity to develop nulls in the direction of 
noise sources as well as more sharply focused beam pat- 
terns, but they assume that the desired signal is statistically 
independent of all sources of degradation. Consequently, 
these algorithms can provide good improvement in SNR 
when signal degradations are caused by additive independ- 
ent noise sources, but these algorithms do not perform well 
in reverberant environments when the distortion is at least 
in part a delayed version of the desired speech signal 
[14, 15]. (This problem can be avoided by only adapting 

during non-speech segments [16]). A third type of ap- 
proach to microphone arraay processing is to use a cross- 
correlation-based algorithm that isolates inter-sensor dif- 
ferences in arrival time of the signals directly (e.g. [17]). 
These algorithms are appealing because they are based on 
human binaural hearing, and cross-correlation is an ef- 
ficient way to identify the direction of a strong signal 
source. Nevertheless, the nonlinear nature of the cross- 
correlation operation renders it inappropriate as a means to 
directly process waveforms. We believe that signal 
processing techniques based on human binaural perception 
are worth pursuing, but their effectiveness for automatic 
speech recognition remains to be conclusively 
demonstrated. 

Pilot evaluation of the Flanagan array. In order to ob- 
tain a better understanding of the ability of array process- 
ing to provide further improvements in recognition ac- 
curacy we conducted a pilot evaluation of the 23- 
microphone array developed by Flanagan and his col- 
leagues at AT&T Bell Laboratories. The Flanagan array, 
which is described in detail in[l  l, 12], is a one- 
dimensional delay-and-sum beamformer which uses 23 
microphones that are unevenly spaced in order to provide a 
beamwidth that is approximately constant over the range of 
frequencies of interest. The array uses first-order gradient 
microphones, which develop a null response in the vertical 
plane. We wished to compare the recognition accuracy on 
the census task obtained using the Flanagan array with the 
accuracy observed using the CLSTLK and PZM6FS 
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microphones. We were especially interested in determin- 
ing the extent to which array processing provides an im- 
provement in recognition accuracy that is complementary 
to the improvement in accuracy provided by acoustical 
pre-processing algorithms such as the CDCN algorithm. 
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Figure 3: Comparison of recognition accuracy obtained 
on a portion of the census task using the omnidirectional 
Crown PZM-6FS, the 23-microphone array developed by 
Flanagan, and the Senneheiser microphone, each with 
and without CDCN. Data were obtained from simul- 
taneous recordings using the three microphones at dis- 
tances of 1 and 3 meters (for the PZM-6FS and the array). 

14 utterances from the census database were obtained from 
each of five male speakers in a sparsely-furnished 
laboratory at the Rutgers CAIP Center with hard walls and 
floors. The reverberation time of this room was informally 
estimated to be between 500 and 750 ms. Simultaneous 
recordings were made of each utterance using three 
microphones: the Sennheiser HMD-414 (CLSTLK) 
microphone, the Crown PZM6FS, and the Flanagan array 
with input lowpass-filtered at 8 kHz. Recordings were 
made with the speaker seated at distances of 1, 2, and 3 
meters from the PZM6FS and Flanagan array 
microphones, wearing the CLSTLK microphone in the 
usual fashion at all times. 

Figure 3 summarizes the error rates obtained from these 
speech samples at two distances, 1 and 3 meters, with and 
without the CDCN algorithm applied to the output of the 
microphone army. Error rates using the CLSTLK 
microphone differed somewhat for the two distances be- 
cause different speech samples were obtained at each dis- 
tance and because the sample size is small. The SPHINX 
system had been previously trained on speech obtained 

using the CLSTLK microphone. As expected, the worst 
results were obtained using the PZM6FS microphone, 
while the lowest error raate was obtained for speech 
recorded using the CLSTLK. More interestingly, the 
results in Fig. 3 show that both the Flanagan array and the 
CDCN algorithm are effective in reducing the error rate, 
and that in fact the error rate at each distance obtained with 
the combination of the two is very close to the error rate 
obtained with the CLSTLK microphone and no acoustical 
pre-processing. The complementary nature of the im- 
provement of the Flanagan array and the CDCN algorithm 
is indicated by the fact that adding CDCN to the array 
improves the error rate (upper panel of Fig. 3), and that 
converting to the array even when CDCN is already 
employed also improves performance (lower panel). 

4. PHYSIOLOGICALLY-MOTIVATED 
FRONT ENDS AND 

ACOUSTICAL PRE-PROCESSING 

In recent years there has also been an increased interest'in 
the use of peripheral signal processing schemes that are 
motivated by human auditory physiology and perception, 
and a number of such schemes have been proposed (e.g. 
[18, 19, 20, 21]). Recent evaluations indicate that with 

"clean" speech, such approaches tend to provide recog- 
nition accuracy that is comparable to that obtained with 
conventional LPC-based or DFT-based signal processing 
schemes, but that these auditory models can provide 
greater robustness with respect to enviromental changes 
when the quality of the incoming speech (or the extent to 
which it resembles speech used in training the system) 
decreases [22, 23]. Despite the apparent utility of such 
processing schemes, no one has a deep-level understanding 
of why they work as well as they do, and in fact different 
researchers choose to emphasize rather different aspects of 
the peripheral auditory system's response to sound in their 
work. Most auditory models include a set of linear 
bandpass filters with bandwidth that increases nonlinearly 
with center frequency, a nonlinear rectification stage that 
frequently includes short-term adaptation and lateral sup- 
pression, and, in some cases, a more central display based 
on short-term temporal information. We estimate that the 
number of arithmetic operations of some of the currently- 
popular auditory models ranges from 35 to 600 times the 
number of operations required for the LPC-based process- 
ing used in SPmNX-II. 

Pilot evalution of the Seneff auditory model. We 
recently completed a series of pilot evaluations using an 
implementation of the Seneff auditory model [21] on the 
census databse. Since almost all evaluations of 
physiologically-motivated front ends to date have been 
performed using artificaUy-added white Gaussian noise, 
we have been interested in the extent to which auditory 
models can provide useful improvements in recognition 
accuracy for speech that has been degraded by reverbera- 
tion or other types of linear filtering. As in the case of 
microphone arrays, we are also especially interested in 
determining the extent to which improvements in robust- 
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ness provided by auditory modelling complement those 
that we already enjoy by the use of acoustical pre- 
processing algorithms such as CDCN. 

We compared error rates obtained using the standard 12 
LPC-based cepstral coefficents normally input to the 
SPHINX system, with those obtained using an implemen- 
tation of the 40-channel mean-rate output of the Seneff 
model [21], and with the 40-channel outputs of Seneff's 
Generalized Synchrony Detectors (GSDs). The system 
was evaluated using the original testing database from the 
census task with the CLSTLK and PZM6FS microphones, 
and also with white Ganssian noise artificially added at 
sig.nal-to-noise ratios of +10, +20, and +30 dB, measured 
using the global SNR method described in [19]. 
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Figure 4: Pilot data comparing error rates obtained on the 
census task using the conventional LPC-based processing 
of SPHINX with results obtained using the mean rate and 
synchrony outputs of the Seneff auditory model. SPHINX 
was trained on the CLSTLK microphone in all cases, and 
tested using either the CLSTLK microphone (upper panel) 
or the Crown PZM6FS microphone (lower panel). White 
noise was artificially added to the speech signals and data 
are plotted as a function of global SNR. 

Figure 4 summarizes the results of these comparisons, with 
error rate plotted as a function of SNR using each of the 
three peripheral signal processing schemes. The upper 
panel describes recognition error rates obtained with the 
system both trained and tested using the CLSTLK 
microphone, and the lower panel describes error rates ob- 
tained with the system trained with the CLSTLK 
microphone but tested with the PZM6FS microphone. 
When the system is trained and tested using the CLSTLK 
microphone, best performance is obtained using conven- 
tional LPC-based signal processing for "clean" speech. As 
the SNR is decreased, however, error rates obtained using 
either the mean rate or GSD outputs of the Seneff model 
degrade more gradually confirming similar findings from 

previous studies. The results in the lower panel of Fig. 4, 
demonstrate that the mean rate and GSD outputs of the 
Seneff model provide lower error rates than conventional 
LPC cepstra when the system is trained using the CLSTLK 
microphone and tested using the PZM6FS. Nevertheless, 
the level of performance achieved by the present im- 
plementation of the auditory model is not as good as that 
achieved by conventional LPC cepstra combined with the 
CDCN algorithm on the same data (Fig. 1). Furthermore, 
the combination of conventional LPC-based processing 
and the CDCN algorithm produced performance that 
equaled or bettered the best performance obtained with the 
auditory model for each test condition. Because the 
auditory model is nonlinear and not easy to port from one 
site to another, these comparisons should all be regarded as 
preliminary. It is quite possible that performance using the 
auditory model could further improve if greater attention 
were paid to tuning it to more closely match the charac- 
teristics of SPHINX. 

We also attempted to determine the extent to which a com- 
bination of auditory processing and the CDCN algorithm 
could provide greater recognition accuracy than either 
processing scheme used in isolation. In these experiments 
we combined the effects of CDCN and auditory processing 
by resynthesizing the speech waveform from cepstral coef- 
ficients that were produced by the original LPC front end 
and then modified by the CDCN algorithm. The resyn- 
thesized speech, which was totally intelligible, was then 
passed through the Seneff auditory model in the usual 
fashion. Unfortunately, it was found that this particular 
combination of CDCN and the auditory model did not im- 
prove the recognition error raate beyond the level achieved 
by CDCN alone. A subsequent error analysis revealed that 
this concatenation of cepstral processing and the CDCN 
algorithm, followed by resynthesis and processing by the 
original SPHINX front end, degraded the error rates even in 
the absence of the auditory processing, although analysis 
and resynthesis without the CDCN algorithm did not 
produce much degradation. This indicates that useful in- 
formation for speech recognition is lost when the resyn- 
thesis process is performed after the CDCN algorithm is 
run. Hence we regard this experiment as inconclusive, and 
we intend to explore other types of combinations of acous- 
tical pre-processing with auditory modelling in the future. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

In this paper we describe our current research in acoustical 
pre-processing for robust speech recognition, as well as 
our first attempts to integrate pre-processing with other 
approaches to robust speech recognition. The CDCN algo- 
rithm was also applied to the ATIS task for the first time, 
and provided the best recognition scores for speech col- 
lected using the unidirectional desktop PCC160 
microphone. We demonstrated that the CDCN algorithm 
and the Flanagan delay-and-sum microphone array can 
provide complementary benefits to speech recognition in 
reverberant environments. We also found that the Seneff 
auditory model improves recognition accuracy of the CMU 
speech system in reverberant as well as noisy environ- 
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ments, but preliminary efforts to combine the auditory 
model with the CDCN algorithm were inconclusive. 
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